

Correlation-Based Methods in Multi-label Learning

Peiyan Li

Data Mining Lab, Big Data Research Center, UESTC Email: junmshao@uestc.edu.cn http://staff.uestc.edu.cn/shaojunming

Outline

- What is MLL?
 - A brief
 - Formal Definition
- Challenge & Philosophy
- Order of Correlations
 - Three Levels
 - Calibrated Label Ranking
 - Random k-Labelsets
- Other Problem Transformation Style
 - Shared Subspace(Common Subspace)
 - Low-Rank Label Correlations
 - Local Label Correlations
- Summary

Input space: represented by a single instance (feature vector) characterizing its properties

Output space: associated with a single label characterizing its semantics

Basic assumption real-world objects are unambiguous What is MLL???

Multi-Label Objects

Clover Adidas Lucky

....

What is MLL???

Multi-Label Objects - More

Jump Water pool Excited

Multi-label objects are ubiquitous !

数据挖掘实验室

Data Mining Lab

Multi-Label Learning (MLL)

Snapshots on MLL - Applications

- Text Categorization
- Automatic annotation for multimedia contents
 - Image, Audio, Video
- Bioinformatics
- World Wide Web
- Information Retrieval
- Directed marketing

Settings

- \mathcal{X} : d-dimensional feature space \mathbb{R}^d
- \mathcal{Y} : label space with q labels {1,2, ..., q}

Inputs

 \mathcal{D} : training set with m examples $\{(x_i, Y_i) | 1 \le i \le m\}$

 $x_i \in \mathcal{X}$ is a d-dimensional feature vector $(x_{i1}, x_{i2}, \dots, x_{id})^T$

 $Y_i \in \mathcal{Y}$ is the label set associated with x_i

Outputs

h: multi-label predictor $\mathcal{X} \to 2^{\mathcal{Y}}$

Alternative Outputs

f: a ranking function $\mathcal{X} \times \mathcal{Y} \to \mathbb{R}$

Here, f(x, y) returns the "confidence" of labeling x with y

Given a threshold function $t: \mathcal{X} \to \mathbb{R}$, we have

$$h(x) = \{y | f(x, y) > t(x)\}$$

Here, t(x) produces a bipartition of label space \mathcal{Y} into

relevant label set and irrelevant label set

Caveat here: MLL Label ≠ Ranking

q=5 \rightarrow 32 label sets q=10 \rightarrow ~1k label sets q=20 \rightarrow ~1M label sets

.

How can we take on this challenge?

Exploiting Label Correlations

For instance:

An image labeled as lions and grassland would be likely annotated with label Africa.

A document labeled as politics would be unlikely labeled as entertainment.

A person labeled as ZhongZi would be an old driver.

First-Order Strategy

Tackle MLL problem in a label-by-label style, ignore the co-existence of other labels.

e.g.: decomposing MLL into q number of independent binary classification problems (BR, Binary Relevance)

Pros:

conceptually simple, efficient and easy to implement Cons:

label correlations totally ignored, less effective

Second-Order Strategy

Tackle MLL problem by considering pairwise relations between labels.

e.g.: ranking between relevant and irrelevant labels, interaction between a pair of labels, etc. (Calibrated Label Ranking)

Pros:

correlations exploited, relatively effective

Cons:

correlations may go beyond second-order

High-Order Strategy

Tackle MLL problem by considering high-order relations between labels.

e.g.: among all the possible labels, among a subset of labels, etc.

Pros:

more appropriate for realistic correlations Cons:

high model complexity, less scalable

Basic Idea

Transform MLL into a label ranking problem by pairwise comparison

Ranking by Pairwise Comparison

Learn q(q-1)/2 binary models, one for each label pair (y_j, y_k) , $1 \le j < k \le q$ Training set for binary model (y_j, y_k) $\Box x_i$ used as positive example if $y_j \in Y_i$ and $y_k \notin Y_i$ $\Box x_i$ used as negative example if $y_j \notin Y_i$ and $y_k \in Y_i$ \Box Otherwise, x_i is ignored

[Fürnkranz et al. MLJo8]

Made by MingLing Zhang

数据挖掘实验室 Data Mining Lab

Add a virtual label y_v to each of the training examples, which serves as an artificial splitting point between relevant and irrelevant labels

Basic Idea

transform MLL into an ensemble of single-label multi-class problems

Label Powerset(LP)

Treat each label set appearing in training set as a new class

[Tsoumakas & Vlahavas, TKDE 11]

K-Labelsets

Randomly pick a subset of k labels (e.g. k=3), and invoke the LP method Build an ensemble of LP models, and predict by voting and thresholding

数据挖掘实验室

Data Mining Lab

Traditional:

- First Order: Single label learning (Binary relevance)
- Second Order: Pairwise methods (Calibrated Label Ranking)
- Third Oder: Combine labels (Random K-Label sets)

Mention:

- Those methods are based on the number of labels we chosen (Output space).
- Algorithm adaption methods like Rank-SVM, Multi-label C4.5, BP-MLL and ML-KNN will not be mentioned here.

Multi-label Learning with feature selection or dimension reduction ?

Multi-label Learning via subspace methods !

Shared Subspace(Common Subspace)

 Extracting Shared Subspace for Multi-label Classification [Ji S, Tang L, Yu S, KDDo8]

Basic Idea

A common subspace is assumed to be shared among multiple labels.

The predictive function:
$$f_l(x) = w_l^T x + v_l^T \Theta x$$

- one part is contributed from the original space
- the other part is derived from the shared subspace
- $\Theta \Theta^T = I$

$$\sum_{l=1}^{m} \left(\frac{1}{n} \sum_{i=1}^{n} L\left(\left(w_{l} + \boldsymbol{\Theta}^{T} \boldsymbol{v}_{l}\right)^{T} \boldsymbol{x}_{i}, \boldsymbol{y}_{i}^{l}\right) + \alpha \|w_{l}\|^{2} + \beta \|w_{l} + \boldsymbol{\Theta}^{T} \boldsymbol{v}_{l}\|^{2}\right)$$

$$\min_{U,V,\Theta} \frac{1}{n} \|XU - Y\|_F^2 + \alpha \|U - \Theta^T V\|_F^2 + \beta \|U\|_F^2$$

s.t. $\Theta \Theta^T = I$

 Learning Low-Rank Label Correlations for Multilabel Classification with Missing Labels [Xu L, Wang Z, Shen Z. ICDM 14]

Basic Idea

The multiple labels are usually correlated in some semantic space while sharing the same input space.

Low-Rank Label Correlations

数据挖掘实验室

Data Mining Lab

 $\min_{\substack{w,s,e \\ s.t.}} \|XW - YS\|_F^2 + \lambda_1 \|W\|_F^2 + \lambda_2 \|S\|_* + \lambda_3 \|E\|_{2,1}$

 Multi-Label Learning by Exploiting Label Correlations Locally [Huang S J, Zhou Z H, Zhou Z H. AAAI 12]

Basic Idea

Instances can be separated into different groups and each group share a subset of label correlations. Instances with similar label vectors usually share the same correlations.

Local Label Correlations

数据挖掘实验室 Data Mining Lab

$$\min_{W,C,P} \sum_{i=1}^{n} \sum_{l=1}^{L} \xi_{il} + \lambda_1 \sum_{l=1}^{L} ||\mathbf{w}_l||^2 \\
+ \lambda_2 \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} ||\mathbf{y}_i - \mathbf{p}_j||^2 \quad (6)$$
s.t. $y_{il} \langle \mathbf{w}_l, [\phi(\mathbf{x}_i), \mathbf{c}_i] \rangle \ge 1 - \xi_{il}$
 $\xi_{il} \ge 0 \quad \forall i \in \{1, \cdots, n\}, \ l \in \{1, \cdots, L\}$
 $\sum_{j=1}^{m} c_{ij} = 1 \quad \forall i \in \{1, \cdots, n\}, \ j \in \{1, \cdots, m\}$
 $0 \le c_{ij} \le 1 \quad \forall i \in \{1, \cdots, n\}, \ j \in \{1, \cdots, m\}$
 c_{ij} measures the probability that S_j is helpful to x_i , thus, it is constrained to be in the interval $[0, 1]$, and the sum of each \mathbf{c}_i is constrained to be 1.

 A lot of work has been done on the label space and the transformation space. Why ??

• What can we do with the input space ?

Thanks

multi-label classication problem

explicit encoding function dimension reduction Implicit Label Space OP-FaIE Linear FaIE FaIE feature space predictive model Latent Space performing LSDR predictive model Latent Space performing LSDR insplue process Feature-aware Implicit Label recoding process Feature-aware Implicit Label recoding process Feature-aware Implicit Label regine Effects Label Space Encoding mon-linear correlation multi-label text classication tagging matrix code matrix linear decoding matrix multi-label Classication regoverability and predictability multi-label classication methods K-dimensional predicted label

Peiyan Li

11/1/2017

