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Traditional Supervised Learning

objectinstance label

 Input space: represented by a single instance (feature vector) 
characterizing its properties 

 Output space: associated with a single label characterizing its 
semantics 

Basic assumption 
real-world objects are unambiguous 
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Multi-Label Objects 

Clover
Adidas
Lucky
…… 
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Multi-Label Objects - More 

What is MLL???

Jump
Water pool
Excited
…… 

Multi-label objects are ubiquitous ! 
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instance

Label
Label
Label
……

Label

Multi-Label Learning (MLL) 
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Snapshots on MLL - Applications 

What is MLL???

 Text Categorization
 Automatic annotation for multimedia contents
 Image, Audio, Video

 Bioinformatics
 World Wide Web
 Information Retrieval
 Directed marketing
 ……
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Settings

𝒳 :  d-dimensional feature space ℝ𝑑

𝒴 : label space with q labels 1,2, ⋯ , 𝑞

Inputs

𝒟 :  training set with 𝑚 examples 𝑥𝑖 , 𝑌𝑖 1 ≤ 𝑖 ≤ 𝑚

𝑥𝑖 ∈ 𝒳 is a d-dimensional feature vector 𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑑
T

𝑌𝑖 ∈ 𝒴 is the label set associated with 𝑥𝑖

Outputs

ℎ :  multi-label predictor 𝒳 → 2𝒴
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Alternative Outputs 

What is MLL: Formal Definition 

𝒇: a ranking function 𝒳 × 𝒴 → ℝ

Here,   𝑓 𝑥, 𝑦 returns the “confidence” of labeling 𝑥 with 𝑦

Given a threshold function 𝑡: 𝒳 → ℝ, we have

ℎ 𝑥 = 𝑦 𝑓 𝑥, 𝑦 > 𝑡 𝑥

Here, 𝑡 𝑥 produces a bipartition of label space 𝒴 into 

relevant label set and irrelevant label set

Caveat here: MLL Label ≠ Ranking
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features label sets

input space output space

The MLL Mapping

Exponential 
number of 
possible 

label sets ! 

q=5 → 32 label sets 
q=10 → ~1k label sets 
q=20 → ~1M label sets
……

How can we 
take on this 
challenge? 
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Exploiting Label Correlations

For instance:

An image labeled as lions and grassland would be likely 
annotated with label Africa.

A document labeled as politics would be unlikely labeled 
as entertainment.

A person labeled as ZhongZi would be an old driver.
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First-Order Strategy 

Tackle MLL problem in a label-by-label style, ignore 
the co-existence of other labels.

e.g.:  decomposing MLL into q number of independent 
binary classification problems (BR, Binary Relevance)

Pros:
conceptually simple, efficient and easy to implement

Cons:

label correlations totally ignored, less effective
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Second-Order Strategy 

Tackle MLL problem by considering pairwise relations 
between labels.

e.g.:  ranking between relevant and irrelevant labels, interaction 
between a pair of labels, etc. (Calibrated Label Ranking)

Pros:

correlations exploited, relatively effective

Cons:

correlations may go beyond second-order
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High-Order Strategy 

Tackle MLL problem by considering high-order 
relations between labels.

e.g.:  among all the possible labels, among a subset of 
labels, etc.

Pros:

more appropriate for realistic correlations

Cons:

high model complexity, less scalable
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Basic Idea
Transform MLL into a label ranking problem by pairwise 

comparison

Ranking by Pairwise Comparison 

Learn 𝒒(𝒒 − 𝟏)/𝟐 binary models, one for each label pair 
𝒚𝒋, 𝒚𝒌 ，𝟏 ≤ 𝒋 < 𝒌 ≤ 𝒒

Training set for binary model 𝒚𝒋, 𝒚𝒌

 𝒙𝒊 used as positive example if 𝒚𝒋 ∈ 𝒀𝒊 and 𝒚𝒌 ∉ 𝒀𝒊

 𝒙𝒊 used as negative example if 𝒚𝒋 ∉ 𝒀𝒊 and 𝒚𝒌 ∈ 𝒀𝒊

 Otherwise, 𝒙𝒊 is ignored

Calibrated Label Ranking

[Fürnkranz et al. MLJ08]
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Made by MingLing Zhang
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Add a virtual label 𝒚𝒗 to each of the training examples, which serves 
as an artificial splitting point between relevant and irrelevant labels 
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[Tsoumakas & Vlahavas, TKDE 11]

Basic Idea
transform MLL into an ensemble of single-label multi-class problems

Label Powerset(LP)

Treat each label set appearing in training set as a new class
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K-Labelsets
Randomly pick a subset of k labels (e.g. k=3), and invoke the LP method
Build an ensemble of LP models, and predict by voting and thresholding
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Traditional:

• First Order: Single label learning (Binary relevance)

• Second Order: Pairwise methods (Calibrated Label Ranking )

• Third Oder: Combine labels (Random K-Label sets)

Mention:

• Those methods are based on the number of labels we chosen 
(Output space).

• Algorithm adaption methods like Rank-SVM, Multi-label C4.5, 

BP-MLL and ML-KNN will not be mentioned here.
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Multi-label Learning with feature selection 
or dimension reduction ?

Multi-label Learning via subspace methods ! 
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• Extracting Shared Subspace for Multi-label Classification 
[Ji S, Tang L, Yu S, KDD08]

Shared Subspace(Common Subspace)

Basic Idea

A common subspace is assumed to be shared among 
multiple labels.
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𝒇𝒍 𝒙 = 𝒘𝒍
𝑻𝒙 + 𝒗𝒍

𝑻𝜣𝒙The predictive function:

• one part is contributed from the original space
• the other part is derived from the shared subspace
• 𝚯𝚯𝑻 = 𝑰
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• Learning Low-Rank Label Correlations for Multi-
label Classification with Missing Labels [Xu L, Wang 
Z, Shen Z. ICDM 14]

Basic Idea

The multiple labels are usually correlated in some 
semantic space while sharing the same input space.
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• Multi-Label Learning by Exploiting Label Correlations 
Locally [Huang S J, Zhou Z H, Zhou Z H. AAAI 12]

Basic Idea

Instances can be separated into different groups 
and each group share a subset of label correlations.

Instances with similar label vectors usually share the 
same correlations.
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• A lot of work has been done on the label space and the transformation 

space. Why ??

• What can we do with the input space ?
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