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Traditional Supervised Learning
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B TInput space: represented by a single instance (feature vector)
characterizing its properties

B Output space: associated with a single label characterizing its
semantics

Basic assumption
real-world objects are unambiguous
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Multi-Label Objects

Clover
Adidas
Lucky
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Multi-Label Objects - More

Jump
Water pool
Excited

Multi-label objects are ubiquitous !
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Multi-Label Learning (MLL)
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Pick one Pick one Pick all applicable
Label 1 Q/ Label 1 Label 1

Label 2 Label 2 Label 2 J
Label 3 Label 3

Label 4 J Label 4 J

Label L Label L J

Binary Multi-class Multi-label
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Snapshots on MLL - Applications

B Text Categorization

B Automatic annotation for multimedia contents
Image, Audio, Video

B Bioinformatics

B World Wide Web

B [Information Retrieval

B Directed marketing




Data Mining Lab

What is MLL: Formal Definition @%ﬂ&!ﬁiﬁ%‘@ﬁﬁi

Settings
X : d-dimensional feature space R%
Y :label space with qlabels {1,2, -, g}
Inputs
D : training set with m examples {(x;,Y;)|1 < i < m}
x; € X is a d-dimensional feature vector (xj{, Xj5, -+, Xjq) |

Y; € Y is the label set associated with x;
Outputs

h : multi-label predictor X — 2Y
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What is MLL: Formal Definition @ﬁﬁ!ﬁ?ﬁiﬁﬁi

Alternative Outputs
f:aranking function X XY - R

Here, f(x,y) returns the “confidence” of labeling x with y

Given a threshold function t: X - R, we have

h(x) = {ylf(x,y) > t(x)}
Here, t(x) produces a bipartition of label space Y into

relevant label set and irrelevant label set
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: input space output space : e ]
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q=5 — 32 label sets '_l—_lc;v;/_c_a_n_;v_e"
q=10 - ~1klabel sets |

' take on this
q=20 - ~1M label sets .challenge7
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Exploiting Label Correlations

For instance:

An image labeled as lions and grassland would be likely
annotated with label Africa.

A document labeled as politics would be unlikely labeled
as entertainment.

A person labeled as ZhongZi would be an old driver.



Data Mining Lab

Order of Correlations @%ﬁ&jﬁ;@g‘ggﬁg

First-Order Strategy

Tackle MLL problem in a label-by-label style, ignore
the co-existence of other labels.

e.g.. decomposing MLL into g number of independent
binary classification problems (BR, Binary Relevance)

Pros:
conceptually simple, efficient and easy to implement

Cons:
label correlations totally ignored, less effective
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Order of Correlations @%ﬁ&jﬁ;@g‘ggﬁg

Second-Order Strategy

Tackle MLL problem by considering pairwise relations
between labels.

e.g.: ranking between relevant and irrelevant labels, interaction
between a pair of labels, etc. (Calibrated Label Ranking)

Pros:
correlations exploited, relatively effective

Cons:

correlations may go beyond second-order
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Order of Correlations @%ﬁ&jﬁ;@g‘ggﬁg

High-Order Strategy

Tackle MLL problem by considering high-order
relations between labels.

e.g.. among all the possible labels, among a subset of
labels, etc.

Pros:
more appropriate for realistic correlations

Cons:
high model complexity, less scalable
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Calibrated Label Ranking @%ﬂ&!ﬁiﬁ%‘@ﬁﬁi

Basic Idea

Transform MLL into a label ranking problem by pairwise
comparison

Ranking by Pairwise Comparison

Learn q(q — 1)/2 binary models, one for each label pair
(yj,¥k), 1<j<k<gq

Training set for binary model (y;, yy)

O x; used as positive example if y;€Y; and y, ¢ Y;

O x; used as negative example if y; ¢ Y; and y, €Y;

O Otherwise, x; is ignored

[Fuirnkranz et al. MLJo8]
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Calibrated Label Ranking - Cont. @ﬂ}&jﬁiﬁ*ﬂﬁg
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Binary Learner
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classifier 1vs2 |

Made by MinglLing Zhang
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labels 1:. votes |
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3, :
y, + 0 ' But, where should
Ys 1 3 ' we bi-partition the
| ranked list?
test example

y, y3 yE
classifier 1vs2 I classifier 1vs3 classifier 4vsb I
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Add a virtual label y, to each of the training examples, which serves
as an artificial splitting point between relevant and irrelevant labels

: e o |
+ L+ - -
L W
[ classifier 1vsV |e Binary Learner
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labels ; votes | _bi-partition
Y» 1 2 | Calibrated . " point
Iz : S Ranking f
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Random k-Labelsets @w&ms@mg
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Basic Idea
transform MLL into an ensemble of single-label multi-class problems

Label Powerset(LP)

Treat each label set appearing in training set as a new class

] ool ] | ™
e T, (e Gd] e i) [
'Yy | Yy | | ', | ' Y. | |
new class 1: new class 2: new class 3: new class 4:
(11001) (10110) (01001) (10011)

[Tsoumakas & Vlahavas, TKDE 11]
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Random k-Labelsets - Cont. @ggﬁ;ﬁ;@g@gﬁg

K-Labelsets

Randomly pick a subset of k labels (e.g. k=3), and invoke the LP method
Build an ensemble of LP models, and predict by voting and thresholding

Multi-class Learner

-

LP Model 1
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Other Problem Transformation Style @%ﬂﬁjﬁ;@g‘ggﬁg

Traditional:

* First Order: Single label learning (Binary relevance)

« Second Order: Pairwise methods (Calibrated Label Ranking )
« Third Oder: Combine labels (Random K-Label sets)

Mention:

« Those methods are based on the number of labels we chosen
(Output space).

* Algorithm adaption methods like Rank-SVM, Multi-label C4.5,
BP-MLL and ML-KNN will not be mentioned here.
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Multi-label Learning with feature selection )
or dimension reduction ?

. @
Multi-label Learning via subspace methods | \_ﬁ?
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Shared Subspace(Common Subspace) @%ﬂﬁjﬁ;ﬁg‘ggﬁg

« Extracting Shared Subspace for Multi-label Classification
[Ji S, Tang L, Yu S, KDDo8]|

Basic Idea

A common subspace is assumed to be shared among
multiple labels.
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Shared Subspace(Common Subspace) @%ﬂﬁjﬁ;@g‘ggﬁg

The predictive function: f,(x) = Wl X + v Tox

 one part is contributed from the original space

 the other part is derived from the shared subspace
« 00" =1
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Shared Subspace(Common Subspace) @%ﬂﬁjﬁ;ﬁg‘ggﬁg
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* Learning Low-Rank Label Correlations for Multi-
label Classification with Missing Labels [Xu L, Wang
Z, Shen Z. ICDM 14]

Basic Idea

The multiple labels are usually correlated in some
semantic space while sharing the same input space.



Low-Rank Label Correlations V/ \wg;g;ﬁggggg

w4 Data Mining Lab

fish ocean sky grass

fish ocean sky grass

Inagel 0.2 | 0.3
© ommez |20z

Il
*-::,

Y % S

min||XW — YS|| + A1 [|[W||% + 2, |IS|l. + A3]|Ell2 1

w,s,e

s.t. Y=YS+E



Local Label Correlations /@ T T

\ > , Data Mining Lab

* Multi-Label Learning by Exploiting Label Correlations
Locally [Huang S ], ZhouZ H, Zhou Z H. AAAI 12]

Basic Idea

Instances can be separated into different groups
and each group share a subset of label correlations.
Instances with similar label vectors usually share the

same correlations.
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Local Label Correlations @ggﬁ;ﬁ;@g@gﬁg
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i=1 j=1

s.t. yulwy, [0(xi),ci]) > 1 — &
&1 >0 Vie{l,--- ,n}, le{l,---,L}
Zj:1c’ij =1 Vie{l,---,n}

0<c¢; <1 Vie{l,---,n}, je{l,---,m}
c;; measures the probability that S; is helpful to z;,

thus, it is constrained to be in the interval [0, 1|, and
the sum of each c; 1s constrained to be 1.
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Summary @w&ms@aﬁzg

* A lot of work has been done on the label space and the transformation

space. Why ??

* What can we do with the input space ?
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